We address the problem of bandwidth selection in MLS surfaces. While the problem has received relatively little attention in the literature, we show that appropriate selection plays a critical role in the quality of reconstructed surfaces. We formulate the MLS polynomial fitting step as a kernel regression problem for both noiseless and noisy data. Based on this framework, we develop fast algorithms to find optimal bandwidths for a large class of weight functions. We show experimental comparisons of our method, which outperforms heuristically chosen functions and weights previously proposed. We conclude with a discussion of the implications of the Levin’s two-step MLS projection for bandwidth selection.