The fundamental limits on channel capacity form a barrier to the sustained growth on the use of wireless networks. To cope with this, multi-path communication solutions provide a promising means to improve reliability and boost Quality of Service (QoS) in areas that are covered by a multitude of wireless access networks. Today, little is known about how to effectively exploit this potential. Motivated by this, we consider N parallel communication networks, each of which is modeled as a processor sharing (PS) queue that handles two types of traffic: foreground and background. We consider a foreground traffic stream of files, each of which is split into N fragments according to a fixed splitting rule (α1, . . . , αN ), where αi = 1 and αi ≥ 0 is the fraction of the file that is directed to network i. Upon completion of transmission of all fragments of a file, it is re-assembled at the receiving end. The background streams use dedicated networks without being split. We study th...