In this paper, we study multi-hop non-regenerative multiple-input multiple-output (MIMO) relay communications with any number of hops. We design the optimal source precoding matrix and the optimal relay amplifying matrices for such relay network where a nonlinear minimal mean-squared error (MMSE)-decision feedback equalizer (DFE) is used at the destination node. We first derive the structure of the optimal source and relay matrices. Then based on the link between most commonly used MIMO system design objectives and the diagonal elements of the MSE matrix, we classify the objective functions into two categories: Schur-convex and Schur-concave composite objective functions. We show that when the composite objective function is Schur-convex, the MMSE-DFE receiver together with the optimal source and relay matrices enable an arbitrary number of source symbols to be transmitted at one time, and yield a significantly improved BER performance compared with non-regenerative MIMO relay systems ...