This paper discusses algorithmic and implementation aspects of a distributed remote visualization system that optimally decomposes and adaptively maps the visualization pipeline to a wide-area shared or dedicated network. The first node of the system typically generates or stores raw data sets, and a remote client resides on the last node equipped with a display device ranging from a personal desktop to a powerwall. Intermediate nodes include workstations, clusters, or rendering engines, which can be located anywhere on the network. We employ a regression method to estimate the effective bandwidth of a transport path. Based on link measurements, node characteristics, and module properties, we strategically organize visualization pipeline modules into groups and dynamically assign the groups to various network nodes to achieve minimal total delay or maximal frame rate. We propose polynomial-time algorithms using the dynamic programming method to compute optimal solutions for the probl...
Mengxia Zhu, Qishi Wu, Nageswara S. V. Rao, S. Sit