This paper proposes a scheme of optimal resource management for reverse-link transmissions in multimedia wideband code-division multiple-access (WCDMA) communications. It is to guarantee quality-of-service (QoS) by resource (transmit power and rate) allocation and to achieve high spectral efficiency by base-station assignment. This approach takes the form of a nonlinearing large-scale optimization problem: maximizing an abstraction for the profit of a service provider subject to QoS satisfaction. Solutions for both single-cell and multicell systems are investigated. The single-cell solution has the advantage of low complexity and global convergence in comparison with the previous work. Maximum achievable throughput (capacity) of a single cell is mathematically evaluated and used as the benchmark for performance measure of multicell systems. For multicell systems, due to its max-max structure, solving the optimization problem directly entails a high-computational complexity. Instead, th...
Majid Soleimanipour, Weihua Zhuang, George H. Free