The preferred method of treatment for Atrial Fibrillation (AF) is by catheter ablation wherein a catheter is guided into the left atrium through a transseptal puncture. However, the transseptal puncture constrains the catheter, thereby limiting its maneuverability and increasing the difficulty in reaching various locations in the left atrium. In this paper, we address the problem of choosing the optimal transseptal puncture location for performing cardiac ablation to obtain maximum maneuverability of the catheter. We have employed an optimization algorithm to maximize the Global Isotropy Index (GII) to evaluate the optimal transseptal puncture location. As part of this algorithm, a novel kinematic model for the catheter has been developed based on a continuum robot model. Preoperative MR/CT images of the heart are segmented using the open source image-guided therapy software, Slicer 3, to obtain models of the left atrium and septal wall. These models are input to the optimization algor...
Jagadeesan Jayender, Rajni V. Patel, Gregory F.