Image matting is the problem of determining for each pixel in an image whether it is foreground, background, or the mixing parameter, ”alpha”, for those pixels that are a mixture of foreground and background. Matting is inherently an ill-posed problem. Previous matting approaches either use naive color sampling methods to estimate foreground and background colors for unknown pixels, or use propagation-based methods to avoid color sampling under weak assumptions about image statistics. We argue that neither method itself is enough to generate good results for complex natural images. We analyze the weaknesses of previous matting approaches, and propose a new robust matting algorithm. In our approach we also sample foreground and background colors for unknown pixels, but more importantly, analyze the confidence of these samples. Only high confidence samples are chosen to contribute to the matting energy function which is minimized by a Random Walk. The energy function we define al...
Jue Wang, Michael F. Cohen