Sciweavers

COMBINATORICS
2006

On Oriented Arc-Coloring of Subcubic Graphs

14 years 14 days ago
On Oriented Arc-Coloring of Subcubic Graphs
A homomorphism from an oriented graph G to an oriented graph H is a mapping from the set of vertices of G to the set of vertices of H such that -----(u)(v) is an arc in H whenever -uv is an arc in G. The oriented chromatic index of an oriented graph G is the minimum number of vertices in an oriented graph H such that there exists a homomorphism from the line digraph LD(G) of G to H (Recall that LD(G) is given by V (LD(G)) = A(G) and ab A(LD(G)) whenever a = -uv and b = -vw). We prove that every oriented subcubic graph has oriented chromatic index at most 7 and construct a subcubic graph with oriented chromatic index 6.
Alexandre Pinlou
Added 11 Dec 2010
Updated 11 Dec 2010
Type Journal
Year 2006
Where COMBINATORICS
Authors Alexandre Pinlou
Comments (0)