Abstract--Additive noise removal from a given signal is an important problem in signal processing. Among the most appealing aspects of this field are the ability to refer it to a well-established theory, and the fact that the proposed algorithms in this field are efficient and practical. Adaptive methods based on anisotropic diffusion (AD), weighted least squares (WLS), and robust estimation (RE) were proposed as iterative locally adaptive machines for noise removal. Recently, Tomasi and Manduchi proposed an alternative noniterative bilateral filter for removing noise from images. This filter was shown to give similar and possibly better results to the ones obtained by iterative approaches. However, the bilateral filter was proposed as an intuitive tool without theoretical connection to the classical approaches. In this paper we propose such a bridge, and show that the bilateral filter also emerges from the Bayesian approach, as a single iteration of some well-known iterative algorithm...