We explore the possibility of using both face and gait in enhancing human recognition at a distance performance in outdoor conditions. Although the individual performance of gait and face based biometrics at a distance under outdoor illumination conditions, walking surface changes, and time variations are poor, we show that recognition performance is significantly enhanced by combination of face and gait. For gait, we present a new recognition scheme that relies on computing distances based on selected, discriminatory, gait stances. Given a gait sequence, covering multiple gait cycles, it identifies the salient stances using a population hidden Markov model (HMM). An averaged representation of the detected silhouettes for these stances are then built using eigenstance shape models. Similarity between two gait sequences is based on the similarities of these averaged representations of the salient stances. This gait recognition strategy, which essentially emphasizes shape over dynamic...