With the ubiquity of information networks and their broad applications, the issue of similarity computation between entities of an information network arises and draws extensive research interests. However, to effectively and comprehensively measure “how similar two entities are within an information network” is nontrivial, and the problem becomes even more challenging when the information network to be examined is massive and diverse. In this paper, we propose a new similarity measure, P-Rank (Penetrating Rank), toward effectively computing the structural similarities of entities in real information networks. P-Rank enriches the well-known similarity measure, SimRank, by jointly encoding both in- and out-link relationships into structural similarity computation. P-Rank is proven to be a unified structural similarity framework, under which all state-of-the-art similarity measures, including CoCitation, Coupling, Amsler and SimRank, are just its special cases. Based on its recur...