Sciweavers

IJCNN
2006
IEEE

P-SVM Variable Selection for Discovering Dependencies Between Genetic and Brain Imaging Data

14 years 6 months ago
P-SVM Variable Selection for Discovering Dependencies Between Genetic and Brain Imaging Data
— The joint analysis of genetic and brain imaging data is the key to understand the genetic underpinnings of brain dysfunctions in several psychiatric diseases known to have a strong genetic component. The goal is to identify associations between genetic and functional or morphometric brain measurements. We here suggest a machine learning method to solve this task, which is based on the recently proposed Potential Support Vector Machine (P-SVM) for variable selection, a subsequent k-NN classification and an estimation of the effect of ’correlations by chance’. We apply it to the detection of associations between candidate single nucleotide polymorphisms (SNPs) and volumetric MRI measurements in alcohol dependent patients and healthy controls.
Johannes Mohr, Imke Puis, Jana Wrase, Sepp Hochrei
Added 11 Jun 2010
Updated 11 Jun 2010
Type Conference
Year 2006
Where IJCNN
Authors Johannes Mohr, Imke Puis, Jana Wrase, Sepp Hochreiter, Andreas Heinz, Klaus Obermayer
Comments (0)