—Two of the fundamental problems in peer-to-peer (P2P) streaming are as follows: what is the maximum streaming rate that can be sustained for all receivers, and what peering algorithms can achieve close to this maximum? These problems of computing and approaching the P2P streaming capacity are often challenging because of the constraints imposed on overlay topology. In this paper, we focus on the limit of P2P streaming rate under node degree bound, i.e., the number of connections a node can maintain is upper bounded. We first show that the streaming capacity problem under node degree bound is NPComplete in general. Then, for the case of node out-degree bound, through the construction of a “Bubble algorithm”, we show that the streaming capacity is at least half of that of a much less restrictive and previously studied case, where we bound the node degree in each streaming tree but not the degree across all trees. Then, for the case of node total-degree bound, we develop a “Clus...