We extend the PAC-Bayes theorem to the sample-compression setting where each classifier is represented by two independent sources of information: a compression set which consists of a small subset of the training data, and a message string of the additional information needed to obtain a classifier. The new bound is obtained by using a prior over a data-independent set of objects where each object gives a classifier only when the training data is provided. The new PAC-Bayes theorem states that a Gibbs classifier defined on a posterior over samplecompressed classifiers can have a smaller risk bound than any such (deterministic) samplecompressed classifier.