Abstract. Recent developments in computer and communication networks require scheduling decisions to be made under increasingly complex system dynamics. We model and analyze the problem of packet transmissions through an arbitrary network of buffered queues, and provide a framework for describing routing and migration. This paper introduces an intuitive geometric description of stability for these networks and describes some simple algorithms which lead to maximal throughput. We show how coordination over sequential timeslots by algorithms such as those based on a round robin can provide considerable advantages over a randomized scheme.