A "pairing function" J associates a unique natural number z to any two natural numbers x,y such that for two "unpairing functions" K and L, the equalities K(J(x,y))=x, L(J(x,y))=y and J(K(z),L(z))=z hold. Using pairing functions on natural number representations of truth tables, we derive an encoding for Binary Decision Diagrams with the unique property that its boolean evaluation faithfully mimics its structural conversion to a a natural number through recursive application of a matching pairing function. We then use this result to derive ranking and unranking functions for BDDs and reduced BDDs. The paper is organized as a self-contained literate Prolog program, available at http://logic.csci.unt.edu/tarau/research/2008/pBDD.zip.