Learning to rank represents a category of effective ranking methods for information retrieval. While the primary concern of existing research has been accuracy, learning efficiency is becoming an important issue due to the unprecedented availability of large-scale training data and the need for continuous update of ranking functions. In this paper, we investigate parallel learning to rank, targeting simultaneous improvement in accuracy and efficiency. Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]: Learning; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval General Terms: Algorithms, Performance.
Shuaiqiang Wang, Byron J. Gao, Ke Wang, Hady Wiraw