In writing parallel programs, programmers expose parallelism and optimize it to meet a particular performance goal on a single platform under an assumed set of workload characteristics. In the field, changing workload characteristics, new parallel platforms, and deployments with different performance goals make the programmer’s development-time choices suboptimal. To address this problem, this paper presents the Degree of Parallelism Executive (DoPE), an API and run-time system that separates the concern of exposing parallelism from that of optimizing it. Using the DoPE API, the application developer expresses parallelism options. During program execution, DoPE’s run-time system uses this information to dynamically optimize the parallelism options in response to the facts on the ground. We easily port several emerging parallel applications to DoPE’s API and demonstrate the DoPE run-time system’s effectiveness in dynamically optimizing the parallelism for a variety of performa...
Arun Raman, Hanjun Kim, Taewook Oh, Jae W. Lee, Da