The purpose of this paper is to present some numerical tools which facilitate the interpretation of simulation or data fitting results and which allow to compute optimal experimental designs. They help to validate mathematical models describing the dynamical behavior of a biological, chemical, or pharmaceutical system, without requiring a priory knowledge about the physical or chemical background. Although the ideas are quite general, we will concentrate our attention to systems of one-dimensional partial differential equations and coupled ordinary differential equations. A special application model serves as a case study and is outlined in detail. We consider the diffusion of a substrate through cutaneous tissue, where metabolic reactions are included in form of Michaelis-Menten kinetics The goal is to simulate transdermal drug delivery, where it is supposed that experimental data are available for substrate and metabolic fluxes. Numerical results are included based on laboratory dat...