In this paper, we study the problem of constructing a family of surfaces from a given spatial geodesic curve. We derive a parametric representation for a surface pencil whose members share the same geodesic curve as an isoparametric curve. By utilizing the Frenet trihedron frame along the given geodesic, we express the surface pencil as a linear combination of the components of this local coordinate frame, and derive the necessary and sufficient conditions for the coefficients to satisfy both the geodesic and the isoparametric requirements. We illustrate and verify the method by finding exact surface pencil formulations for some simple surfaces, such as surfaces of revolution and ruled surfaces. Finally, we demonstrate the use of this method in a garment design application. q 2003 Elsevier Ltd. All rights reserved.