In this paper, we propose a novel framework for contour based object detection. Compared to previous work, our contribution is three-fold. 1) A novel shape matching scheme suitable for partial matching of edge fragments. The shape descriptor has the same geometric units as shape context but our shape representation is not histogram based. 2) Grouping of partial matching hypotheses to object detection hypotheses is expressed as maximum clique inference on a weighted graph. 3) A novel local affine-transformation to utilize the holistic shape information for scoring and ranking the shape similarity hypotheses. Consequently, each detection result not only identifies the location of the target object in the image, but also provides a precise location of its contours, since we transform a complete model contour to the image. Very competitive results on ETHZ dataset, obtained in a pure shape-based framework, demonstrate that our method achieves not only accurate object detection but also p...