Abstract--The particle swarm is an algorithm for finding optimal regions of complex search spaces through the interaction of individuals in a population of particles. Even though the algorithm, which is based on a metaphor of social interaction, has been shown to perform well, researchers have not adequately explained how it works. Further, traditional versions of the algorithm have had some undesirable dynamical properties, notably the particles' velocities needed to be limited in order to control their trajectories. The present paper analyzes a particle's trajectory as it moves in discrete time (the algebraic view), then progresses to the view of it in continuous time (the analytical view). A five-dimensional depiction is developed, which describes the system completely. These analyses lead to a generalized model of the algorithm, containing a set of coefficients to control the system's convergence tendencies. Some results of the particle swarm optimizer, implementing ...