A Particle Swarm Optimization algorithm with feasibility-based rules (FRPSO) is proposed in this paper to solve mixed-variable optimization problems. An approach to handle various kinds of variables is discussed. Constraint handling is based on simple feasibility-based rules, not needing addinional penalty parameters and not guaranteeing to be in the feasible region at all times. Two real-world mixed-varible optimization benchmark problems are presented to evaluate the performance of the FRPSO algorithm, and it is found to be highly competitive compared to other existing stochastic algorithms. Keywords- Particle Swarm Optimization; Feasibility-based rules; Mixed-variables