Approximate linear programming (ALP) is an efficient approach to solving large factored Markov decision processes (MDPs). The main idea of the method is to approximate the optimal value function by a set of basis functions and optimize their weights by linear programming (LP). This paper proposes a new ALP approximation. Comparing to the standard ALP formulation, we decompose the constraint space into a set of low-dimensional spaces. This structure allows for solving the new LP efficiently. In particular, the constraints of the LP can be satisfied in a compact form without an exponential dependence on the treewidth of ALP constraints. We study both practical and theoretical aspects of the proposed approach. Moreover, we demonstrate its scale-up potential on an MDP with more than 2100 states.