Abstract. Profiling can effectively analyze program behavior and provide critical information for feedback-directed or dynamic optimizations. Based on memory profiling, reuse distance analysis has shown much promise in predicting data locality for a program using inputs other than the profiled ones. Both wholeprogram and instruction-based locality can be accurately predicted by reuse distance analysis. Reuse distance analysis abstracts a cluster of memory references for a particular instruction having similar reuse distance values into a locality pattern. Prior work has shown that a significant number of memory instructions have multiple locality patterns, a property not desirable for many instruction-based memory optimizations. This paper investigates the relationship between locality patterns and execution paths by analyzing reuse distance distribution along each dynamic path to an instruction. Here a path is defined as the program execution trace from the previous access of a memory...