Dual Consistency (DC) is a property of Constraint Networks (CNs) which is equivalent, in its unrestricted form, to Path Consistency (PC). The principle is to perform successive singleton checks (i.e. enforcing arc consistency after the assignment of a value to a variable) in order to identify inconsistent pairs of values, until a fixpoint is reached. In this paper, we propose two new algorithms, denoted by sDC2 and sDC3, to enforce (strong) PC following the DC approach. These algorithms can be seen as refinements of Mac Gregor’s algorithm as they partially and totally exploit the incrementality of the underlying Arc Consistency algorithm. While sDC3 admits the same interesting worst-case complexities as PC8, sDC2 appears to be the most robust algorithm in practice. Indeed, compared to PC8 and the optimal PC2001, sDC2 is usually around one order of magnitude faster on large instances.