In crowdsensing, appropriate rewards are always expected to compensate the participants for their consumptions of physical resources and involvements of manual efforts. While continuous low quality sensing data could do harm to the availability and preciseness of crowdsensing based services, few existing incentive mechanisms have ever addressed the issue of sensing data’s quality. The design of quality based incentive mechanism is motivated by its potential to avoid inefficient sensing and unnecessary rewards. In this paper, we incorporate the consideration of data quality into the design of incentive mechanism for crowdsensing, and propose to pay the participants as how well they do, to motivate the rational participants to perform data sensing efficiently. This mechanism estimates the quality of sensing data, and offers each participant a reward based on her effective contribution. We also implement the mechanism and evaluate the improvements in terms of quality of service and ...