When an image is viewed at varying resolutions, it is known to create discrete perceptual jumps or transitions amid the continuous intensity changes. In this paper, we study a perceptual scale-space theory which differs from the traditional image scale-space theory in two aspects. (i) In representation, the perceptual scale-space adopts a full generative model. From a Gaussian pyramid it computes a sketch pyramid where each layer is a primal sketch representation [13] – an attribute graph whose elements are image primitives for the image structures. Each primal sketch graph generates the image in the Gaussian pyramid, and the changes between the primal sketch graphs in adjacent layers are represented by a set of basic and composite graph operators to account for the perceptual transitions. (ii) In computation, the sketch pyramid and graph operators are inferred, as hidden variables, from the images through Bayesian inference by stochastic algorithm, in contrast to the deterministic...