Sciweavers

COCO
2007
Springer

Perfect Parallel Repetition Theorem for Quantum XOR Proof Systems

14 years 6 months ago
Perfect Parallel Repetition Theorem for Quantum XOR Proof Systems
We consider a class of two-prover interactive proof systems where each prover returns a single bit to the verifier and the verifier’s verdict is a function of the XOR of the two bits received. We show that, when the provers are allowed to coordinate their behavior using a shared entangled quantum state, a perfect parallel repetition theorem holds in the following sense. The prover’s optimal success probability for simultaneously playing a collection of XOR proof systems is exactly the product of the individual optimal success probabilities. This property is remarkable in view of the fact that, in the classical case (where the provers can only utilize classical information), it does not hold. The theorem is proved by analyzing parities of XOR proof systems using semidefinite programming techniques, which we then relate to parallel repetitions of XOR games via Fourier analysis. Keywords. Quantum computing, interactive proof systems, parallel repetition. Subject classification. 81...
Richard Cleve, William Slofstra, Falk Unger, Sarva
Added 07 Jun 2010
Updated 07 Jun 2010
Type Conference
Year 2007
Where COCO
Authors Richard Cleve, William Slofstra, Falk Unger, Sarvagya Upadhyay
Comments (0)