As scientific data sets increase in size, dimensionality, and complexity, new high resolution, interactive, collaborative networked display systems are required to view them in real-time. Increasingly, the principles of virtual reality (VR) are being applied to modern scientific visualization. One of the tenets of VR is stereoscopic (stereo or 3d) display, however the need to wear stereo glasses or other gear to experience the virtual world is encumbering and hinders other positive aspects of VR such as collaboration. Autostereoscopic (autostereo) displays present imagery in 3d without the need to wear glasses or other gear, but few qualify as VR displays. The Electronic Visualization Laboratory (EVL) at the University of Illinois at Chicago (UIC) has designed and built a single-screen version of its 35-panel tiled Varrier display, called Personal Varrier. Based on a static parallax barrier and the Varrier computational method, Personal Varrier provides a quality 3d autostereo experie...
Tom Peterka, Daniel J. Sandin, Jinghua Ge, Javier