The anatomy, function and hemodynamics of the aortic and mitral valves are known to be strongly interconnected. An integrated quantitative and visual assessment of the aortic-mitral coupling may have an impact on patient evaluation, planning and guidance of minimal invasive procedures. In this paper, we propose a novel model-driven method for functional and morphological characterization of the entire aortic-mitral apparatus. A holistic physiological model is hierarchically defined to represent the anatomy and motion of the two left heart valves. Robust learning-based algorithms are applied to estimate the patientspecific spatial-temporal parameters from four-dimensional TEE and CT data. The piecewise affine location of the valves is initially determined over the whole cardiac cycle using an incremental search performed in marginal spaces. Consequently, efficient spectrum detection in the trajectory space is applied to estimate the cyclic motion of the articulated model. Finally, the f...