Sciweavers

ESWA
2002

A personalized recommender system based on web usage mining and decision tree induction

14 years 12 days ago
A personalized recommender system based on web usage mining and decision tree induction
A personalized product recommendation is an enabling mechanism to overcome information overload occurred when shopping in an Internet marketplace. Collaborative filtering has been known to be one of the most successful recommendation methods, but its application to e-commerce has exposed well-known limitations such as sparsity and scalability, which would lead to poor recommendations. This paper suggests a personalized recommendation methodology by which we are able to get further effectiveness and quality of recommendations when applied to an Internet shopping mall. The suggested methodology is based on a variety of data mining techniques such as web usage mining, decision tree induction, association rule mining and the product taxonomy. For the evaluation of the methodology, we implement a recommender system using intelligent agent and data warehousing technologies. q 2002 Elsevier Science Ltd. All rights reserved.
Yoon Ho Cho, Jae Kyeong Kim, Soung Hie Kim
Added 18 Dec 2010
Updated 18 Dec 2010
Type Journal
Year 2002
Where ESWA
Authors Yoon Ho Cho, Jae Kyeong Kim, Soung Hie Kim
Comments (0)