We study the problem of automatically assigning appropriate music pieces to a picture or, in general, series of pictures. This task, commonly referred to as soundtrack suggestion, is non-trivial as it requires a lot of human attention and a good deal of experience, with master pieces distinguished, e.g., with the Academy Award for Best Original Score. We put forward PICASSO to solve this task in a fully automated way. PICASSO makes use of genuine samples obtained from first-class contemporary movies. Hence, the training set can be arbitrarily large and is also inexpensive to obtain but still provides an excellent source of information. At query time, PICASSO employs a three-level algorithm. First, it selects for a given query image a ranking of the most similar screenshots taken, and subsequently, selects for each screenshot the most similar songs to the music played in the movie when the screenshot was taken. Last, it issues a top-K aggregation algorithm to find the overall best su...