Fingerprint friction ridge details are generally described in a hierarchical order at three levels, namely, Level 1 (pattern), Level 2 (minutiae points) and Level 3 (pores and ridge shape). Although high resolution sensors (1000dpi) have become commercially available and have made it possible to reliably extract Level 3 features, most Automated Fingerprint Identification Systems (AFIS) employ only Level 1 and Level 2 features. As a result, increasing the scan resolution does not provide any matching performance improvement [1]. We develop a matcher that utilizes Level 3 features, including pores and ridge contours, for 1000dpi fingerprint matching. Level 3 features are automatically extracted using wavelet transform and Gabor filters and are locally matched using the ICP algorithm. Our experiments on a median-sized database show that Level 3 features carry significant discriminatory information. EER values are reduced (relatively 20%) when Level 3 features are employed in combination ...
Anil K. Jain, Meltem Demirkus, Yi Chen