Numerical possibility distributions can encode special convex families of probability measures. The connection between possibility theory and probability theory is potentially fruitful in the scope of statistical reasoning when uncertainty due to variability of observations should be distinguished from uncertainty due to incomplete information. This paper proposes an overview of numerical possibility theory. Its aim is to show that some notions in statistics are naturally interpreted in the language of this theory. First, probabilistic inequalites (like Chebychev's) offer a natural setting for devising possibility distributions from poor probabilistic information. Moreover, likelihood functions obey the laws of possibility theory when no prior probability is available. Possibility distributions also generalize the notion of confidence or prediction intervals, shedding some light on the role of the mode of asymmetric probability densities in the derivation of maximally informative...