We introduce the posterior probabilistic clustering (PPC), which provides a rigorous posterior probability interpretation for Nonnegative Matrix Factorization (NMF) and removes the uncertainty in clustering assignment. Furthermore, PPC is closely related to probabilistic latent semantic indexing (PLSI). Categories and Subject Descriptors H.3.3 [Information Search and Retrieval]: Clustering; I.2 [Artificial Intelligence]: Learning General Terms Algorithms, Experimentation, Measurement, Performance, Theory Keywords Sparse, Posterior Probabilistic Clustering, NMF
Chris H. Q. Ding, Tao Li, Dijun Luo, Wei Peng