In recent years different authors have proposed the used of random-walk-based algorithms for varying tasks in the networking community. These proposals include searching, routing, self-stabilization, and query processing in wireless networks, peer-to-peer networks and other distributed systems. This approach is gaining popularity because random walks present locality, simplicity, low-overhead and inherent robustness to structural changes. In this work we propose and investigate an enhanced algorithm that we refer to as random walks with choice, in which at each step, instead of selecting just one neighbor, the walk moves to the next node after examining a small number of neighbors sampled at random. Our empirical results on random geometric graphs, the model best suited for wireless networks, suggest a significant improvement in important metrics such as the cover time and load-balancing properties of random walks. To obtain more robust and systematic results, we investigate random ...