Abstract. Yao’s classical millionaires’ problem is about securely determining whether x > y, given two input values x, y, which are held as private inputs by two parties, respectively. The output x > y becomes known to both parties. In this paper, we consider a variant of Yao’s problem in which the inputs x, y as well as the output bit x > y are encrypted. Referring to the framework of secure n-party computation based on threshold homomorphic cryptosystems as put forth by Cramer, Damg˚ard, and Nielsen at Eurocrypt 2001, we develop solutions for integer comparison, which take as input two lists of encrypted bits representing x and y, respectively, and produce an encrypted bit indicating whether x > y as output. Secure integer comparison is an important building block for applications such as secure auctions. In this paper, our focus is on the two-party case, although most of our results extend to the multi-party case. We propose new logarithmic-round and constant-roun...
Juan A. Garay, Berry Schoenmakers, José Vil