A significant source for enhancing application performance and for reducing power consumption in embedded processor applications is to improve the usage of the memory hierarchy. In this paper, a temporal and spatial locality optimization framework of nested loops is proposed, driven by parameterized cost functions. The considered loops can be imperfectly nested. New data layouts are propagated through the connected references and through the loop nests as constraints for optimizing the next connected reference in the same nest or in the other ones. Unlike many existing methods, special attention is paid to TLB (Translation Lookaside Buffer) effectiveness since TLB misses can take from tens to hundreds of processor cycles. Our approach only considers active data, that is, array elements that are actually accessed by a loop, in order to prevent useless memory loads and take advantage of storage compression and temporal locality. Moreover, the same data transformation is not necessarily a...