Sciweavers

ICST
2009
IEEE

Predicting Attack-prone Components

14 years 6 months ago
Predicting Attack-prone Components
GEGICK, MICHAEL CHARLES. Predicting Attack-prone Components with Source Code Static Analyzers. (Under the direction of Laurie Williams). No single vulnerability detection technique can identify all vulnerabilities in a software system. However, the vulnerabilities that are identified from a detection technique may be predictive of the residuals. We focus on creating and evaluating statistical models that predict the components that contain the highest risk residual vulnerabilities. The cost to find and fix faults grows with time in the software life cycle (SLC). A challenge with our statistical models is to make the predictions available early in the SLC to afford for cost-effective fortifications. Source code static analyzers (SCSA) are available during coding phase and are also capable of detecting code-level vulnerabilities. We use the code-level vulnerabilities identified by these tools to predict the presence of additional coding vulnerabilities and vulnerabilities associated wit...
Michael Gegick, Pete Rotella, Laurie A. Williams
Added 24 May 2010
Updated 24 May 2010
Type Conference
Year 2009
Where ICST
Authors Michael Gegick, Pete Rotella, Laurie A. Williams
Comments (0)