Sciweavers

AAAI
2006

Predicting Electricity Distribution Feeder Failures Using Machine Learning Susceptibility Analysis

14 years 1 months ago
Predicting Electricity Distribution Feeder Failures Using Machine Learning Susceptibility Analysis
A Machine Learning (ML) System known as ROAMS (Ranker for Open-Auto Maintenance Scheduling) was developed to create failure-susceptibility rankings for almost one thousand 13.8kV-27kV energy distribution feeder cables that supply electricity to the boroughs of New York City. In Manhattan, rankings are updated every 20 minutes and displayed on distribution system operators' screens. Additionally, a separate system makes seasonal predictions of failure susceptibility. These feeder failures, known as "Open Autos" or "O/As," are a significant maintenance problem. A year's sustained research has led to a system that demonstrates high accuracy: 75% of the feeders that actually failed over the summer of 2005 were in the 25% of feeders ranked as most at-risk. By the end of the summer, the 100 most susceptible feeders as ranked by the ML system were accounting for up to 40% of all O/As that subsequently occurred each day. The system's algorithm also identifie...
Philip Gross, Albert Boulanger, Marta Arias, David
Added 30 Oct 2010
Updated 30 Oct 2010
Type Conference
Year 2006
Where AAAI
Authors Philip Gross, Albert Boulanger, Marta Arias, David L. Waltz, Philip M. Long, Charles Lawson, Roger Anderson, Matthew Koenig, Mark Mastrocinque, William Fairechio, John A. Johnson, Serena Lee, Frank Doherty, Arthur Kressner
Comments (0)