Sciweavers

ICDM
2008
IEEE

Prediction of Skin Penetration Using Machine Learning Methods

14 years 5 months ago
Prediction of Skin Penetration Using Machine Learning Methods
Improving predictions of the skin permeability coefficient is a difficult problem. It is also an important issue with the increasing use of skin patches as a means of drug delivery. In this work, we apply K-nearest-neighbour regression, single layer networks, mixture of experts and Gaussian processes to predict the permeability coefficient. We obtain a considerable improvement over the quantitative structureactivity relationship (QSARs) predictors. We show that using five features, which are molecular weight, solubility parameter, lipophilicity, the number of hydrogen bonding acceptor and donor groups, can produce better predictions than the one using only lipophilicity and the molecular weight. The Gaussian process regression with five compound features gives the best performance in this work.
Yi Sun, Gary P. Moss, Maria Prapopoulou, Rod Adams
Added 30 May 2010
Updated 30 May 2010
Type Conference
Year 2008
Where ICDM
Authors Yi Sun, Gary P. Moss, Maria Prapopoulou, Rod Adams, Marc B. Brown, Neil Davey
Comments (0)