Sciweavers

ICPR
2004
IEEE

Principal Component Analysis for Online Handwritten Character Recognition

15 years 16 days ago
Principal Component Analysis for Online Handwritten Character Recognition
In this paper, Principal Component Analysis (PCA) is applied to the problem of Online Handwritten Character Recognition in the Tamil script. The input is a temporally ordered sequence of (x,y) pen coordinates corresponding to an isolated character obtained from a digitizer. The input is converted into a feature vector of constant dimensions following smoothing and normalization. PCA is used to find the basis vectors of each class subspace and the orthogonal distance to the subspaces used for classification. Preclustering of the training data and modification of distance measure are explored to overcome some common problems in the traditional subspace method. In empirical evaluation, these PCA-based classification schemes are found to compare favorably with nearest neighbour classification.
A. G. Ramakrishnan, Sriganesh Madhvanath, V. Deepu
Added 09 Nov 2009
Updated 09 Nov 2009
Type Conference
Year 2004
Where ICPR
Authors A. G. Ramakrishnan, Sriganesh Madhvanath, V. Deepu
Comments (0)