Calling context enhances program understanding and dynamic analyses by providing a rich representation of program location. Compared to imperative programs, objectoriented programs use more interprocedural and less intraprocedural control flow, increasing the importance of context sensitivity for analysis. However, prior online methods for computing calling context, such as stack-walking or maintaining the current location in a calling context tree, are expensive in time and space. This paper introduces a new online approach called probabilistic calling context (PCC) that continuously maintains a probabilistically unique value representing the current calling context. For millions of unique contexts, a 32-bit PCC value has few conflicts. Computing the PCC value adds 3% average overhead to a Java virtual machine. PCC is well-suited to clients that detect new or anomalous behavior since PCC values from training and production runs can be compared easily to detect new contextsensitive ...
Michael D. Bond, Kathryn S. McKinley