This paper addresses the issue of devising a new document prior for the language modeling (LM) approach for Information Retrieval. The prior is based on term statistics, derived in a probabilistic fashion and portrays a novel way of considering document length. Furthermore, we developed a new way of combining document length priors with the query likelihood estimation based on the risk of accepting the latter as a score. This prior has been combined with a document retrieval language model that uses Jelinek-Mercer (JM), a smoothing technique which does not take into account document length. The combination of the prior boosts the retrieval performance, so that it outperforms a LM with a document length dependent smoothing component (Dirichlet prior) and other state of the art high-performing scoring function (BM25). Improvements are significant, robust across different collections and query sizes.