Sciweavers

ICCV
2011
IEEE

Probabilistic Group-Level Motion Analysis and Scenario Recognition

12 years 11 months ago
Probabilistic Group-Level Motion Analysis and Scenario Recognition
This paper addresses the challenge of recognizing behavior of groups of individuals in unconstraint surveillance environments. As opposed to approaches that rely on agglomerative or decisive hierarchical clustering techniques, we propose to recognize group interactions without making hard decisions about the underlying group structure. Instead we use a probabilistic grouping strategy evaluated from the pairwise spatial-temporal tracking information. A path-based grouping scheme determines a soft segmentation of groups and produces a weighted connection graph where its edges express the probability of individuals belonging to a group. Without further segmenting this graph, we show how a large number of low- and high-level behavior recognition tasks can be performed. Our work builds on a mature multi-camera multi-target person tracking system that operates in real-time. We derive probabilistic models to analyze individual track motion as well as group interactions. We show that the soft...
Ming-Ching Chang, Nils Krahnstoever, Weina Ge
Added 12 Dec 2011
Updated 12 Dec 2011
Type Journal
Year 2011
Where ICCV
Authors Ming-Ching Chang, Nils Krahnstoever, Weina Ge
Comments (0)