Efficient implementation of DSP applications is critical for many embedded systems. Optimising C compilers for embedded processors largely focus on code generation and instruction scheduling which, with their growing maturity, are providing diminishing returns. This paper empirically evaluates another approach, namely source-level transformations and the probabilistic feedback-driven search for “good” transformation sequences within a large optimisation space. This novel approach combines two selection methods: one based on exploring the optimisation space, the other focused on localised search of good areas. This technique was applied to the UTDSP benchmark suite on two digital signal and multimedia processors (Analog Devices TigerSHARC TS-101, Philips TriMedia TM-1100) and an embedded processor derived from a popular general-purpose processor architecture (Intel Celeron 400). On av
Björn Franke, Michael F. P. O'Boyle, John Tho