This paper presents a mu-calculus-based modal logic for describing properties of reactive probabilistic labeled transition systems (RPLTSs) and develops a modelchecking algorithm for determining whether or not states in finite-state RPLTSs satisfy formulas in the logic. The logic is based on the distinction between (probabilistic) “systems” and (nonprobabilistic) “observations”: using the modal mu-calculus, one may specify sets of observations, and the semantics of our logic then enable statements to be made about the measures of such sets at various system states. The logic may be used to encode a variety of probabilistic modal and temporal logics; in addition, the model-checking problem for it may be reduced to the calculation of solutions to systems of non-linear equations. Finally, the logic induces an equivalence on RPLTSs that coincides with accepted notions of probabilistic bisimulation in the literature. Key words: Probabilistic transition systems, reactive systems, p...
Murali Narasimha, Rance Cleaveland, S. Purushotham