In the approximation of linear elliptic operators in mixed form, it is well known that the so-called inf-sup and ellipticity in the kernel properties are sufficient (and, in a sense to be made precise, necessary) in order to have good approximation properties and optimal error bounds. One might think, in the spirit of Mercier-Osborn-Rappaz-Raviart and in consideration of the good behavior of commonly used mixed elements (like Raviart