We propose techniques for processing SPARQL queries over a large RDF graph in a distributed environment. We adopt a “partial evaluation and assembly” framework. Answering a SPARQL query Q is equivalent to finding subgraph matches of the query graph Q over RDF graph G. Based on properties of subgraph matching over a distributed graph, we introduce local partial match as partial answers in each fragment of RDF graph G. For assembly, we propose two methods: centralized and distributed assembly. We analyze our algorithms from both theoretically and experimentally. Extensive experiments over both real and benchmark RDF repositories of billions of triples confirm that our method is superior to the state-of-the-art methods in both the system’s performance and scalability.
Peng Peng, Lei Zou, M. Tamer Özsu, Lei Chen 0